CDG - Genetics

Dulce Quelhas, PharmaD, MSc
Clinical Laboratory Geneticist
Biochemical Genetics Unit
Centro de Genética Médica Jacinto de Magalhães, CHP, Porto, PORTUGAL
Why is glycosylation important?

• Glycosylation is by far the most complex form of protein and lipid modification in all domains of life

• The barrier of 100 genes defects with impairing glycosylation has just been passed:

ER N-glycosylation defects identified in CDG patients

Golgi glycosidase and glycosyltransferase defects

Golgi-localized nucleotide-activated sugar transporter defects
Passing on genetic information from parents to children

The 46 human chromosomes seen down the microscope
Hundreds of genes are located on each chromosome

http://rise.duke.edu/
What is a gene?

• A gene is the basic physical and functional unit of heredity.
• Act as instructions to make molecules called proteins.
• Every person has two copies of each gene, one inherited from each parent.
• Alleles are forms of the same gene with small differences in their sequence of DNA bases.

Gene structure. The DNA sequences transcribed as RNA are collectively called the gene and include exons (expressed sequences) and introns (intervening sequences). Molecular and Cell Biology Ko, Tien C., Sabiston Textbook of Surgery, Chapter 3, 24-39; by Saunders, an imprint of Elsevier Inc.
What is a mutation?

- Mutations are changes in the genetic sequence
- Main cause of diversity among organisms.
- Mutations are necessary for evolution.
- Can damage existing adaptations as well.

Missense mutation

http://www.geneticseducation.nhs.uk/
Inheritance in CDG
Autosomal recessive inheritance where both parents are carriers

As in PMM2- CDG and most CDG’s

Parents

Sperm or eggs

Carrier for the condition

Carrier for the condition
Inheritance in CDG
Autosomal recessive inheritance where both parents are carriers

Parents

Sperm or eggs

At conception

Carrier for the condition

Does not have the condition, non-carrier

Carrier for the condition

Carrier for the condition

Has the condition
Inheritance in CDG
X-linked inheritance

...Whereas a female has two X chromosomes.

There are clinical consequences of males having only one X chromosome. The majority of the genes on the X chromosome are present in only one copy.

Sex chromosomes of a male
Female

Males

Altered gene

Y chromosome

X chromosome

Male with an X-linked recessive condition

Females

Usual gene

Altered gene

Female who is a carrier for an X-linked recessive condition
X-linked inheritance where the mother is a carrier for an X-linked recessive condition: SLC35A2-CDG

- **Female, does not have the condition, non-carrier**
- **Female, carrier for the condition**
- **Male, does not have the condition**
- **Male, has the condition**

XIST gene encoded at site of X inactivation center.

AR

Xist

XIST RNA spread from X inactivation center
✔ Medical test that identifies changes in chromosomes, genes, or proteins.
✔ The results of these tests can confirm or rule out suspected genetic conditions.
The focus for molecular medicine is the individual and family.

- Depending on the type of DNA test other members of the molecular medicine team are needed.
- Ultimately, the primary care (family) physician will be the key professional.
- Electronic health record (EHR) for data storage or a link to where data are stored.
- Important to allow all authorized team members to access EHR data and results and avoid unnecessary testing.

DNA Genetic Testing
Molecular Medicine, Chapter 3, 81-115
Copyright © 2012 Elsevier Inc.
✔ KARYOTYPE

- A genetic test used to examine an individual's chromosome structure.

✔ FISH (Fluorescence In Situ Hybridization)

- To assess for deletions/duplications for a suspected genetic syndrome, extra or missing chromosomes, and sex chromosomes
- A genetic test used to find small deletions or duplications in an individual's chromosomes.
✔ CHROMOSOMAL MICROARRAY

A genetic test used to examine or quantify an individual's amount of genetic material; it can detect changes smaller than those found through FISH or karyotype.

From microscopes to microarrays: dissecting recurrent chromosomal rearrangements Beverly S. Emanuel & Sulagna C. Saitta
Nature Reviews Genetics 8, 869-883 (November 2007)
doi:10.1038/nrg2136
If I have a family history of CDG, should I have a genetic test? How is the CDG genetic test done?

Targeted mutation analysis - few specific genetic mutations within a single gene. Ex: known familial mutation, and/or specific mutations common in certain ethnic groups for a specific disease.

Single gene sequencing
- A genetic test used to examine a single gene's entire sequence at a high level of detail.
- Used for diagnostic purposes when a specific genetic syndrome is suspected.
Types of genetic testing
From macro to micro...

- Targeted mutation analysis
- Single gene sequencing
- Multiple gene sequencing panel
- Whole exome sequencing
- Whole genome sequencing

Published online before print July 14, 2013, doi:10.1161/CIRCGENETICS.113.000085
Circulation: Cardiovascular Genetics August 2013 vol. 6 no. 4 427-434
Types of genetic testing
From macro to micro...

Whole exome sequencing
All of the exons (i.e. coding regions) within all of the genes in an individual's genome.

Whole genome sequencing
Sequence an individual's entire genome (both coding and noncoding regions).
Individuals suspected of having an underlying genetic cause for their symptoms.

Understanding the limitations of next generation sequencing informatics, an approach to clinical pipeline validation using artificial data sets Daber, Robert, Cancer Genetics, Volume 206, Issue 12, 441-448 Copyright © 2014 Elsevier Inc
What have recent molecular biology strategies brought to CDG?

- Variant specific testing interrogates known and highly frequent variant.
- Single-gene sequencing interrogates the entire gene implicated with a disease.
- NGS panel testing involves sequencing of multiple genes associated with a specific disorder or phenotype.
- ES interrogates all of the genome regardless of the phenotype:
 - Clinical presentation is atypical, complex or nonspecific.
 - Disease specific panel not available.

Copyright © 2015 Elsevier Inc.
Whole exome sequencing – who is currently tested?

- Symptoms that cannot be diagnosed through continuous testing
- Multiple family members with similar symptoms/features without a specific diagnosis
- Multiple congenital anomalies/birth defects
- A history of multiple miscarriages and/or stillbirths
- An unexplained infant death
- General developmental delay/intellectual disability

What have recent molecular biology strategies brought to CDG?

✓ Exome and whole-genome sequencing
 ✓ CDG-causing mutations in genes previously not associated with glycosylation
 ✓ Broading CDG clinical scope even wider
 ✓ Expanding our view on these complex pathways
What do the results of genetic testing mean? How long does the genetic test take?

Whole exome sequencing

Whole genome sequencing

- Results in a large amount of data, more laborious.
- Some of which will be of uncertain significance; also can get results for other genetic diseases that are not related to the initial reason for testing.

Prototypical workflow in a clinical next generation sequencing laboratory.

Clinical Integration of Next-Generation Sequencing Technology

Gullapalli, R.R., MD, PhD, Clinics in Laboratory Medicine, Volume 32, Issue 4, 585-599

Copyright © 2012 Elsevier Inc.
Can I test my other children?

National regulations:
Portugal: Law n.º 12/2005 de 26 de Janeiro

Most bioethicists:
• Unless there is a clear benefit to the medical care of the child
• Genetic testing of asymptomatic children for a carrier state should be done only when the child is sufficiently old and mature, to decide whether to seek such testing.

• ASHG POSITION STATEMENT Points to Consider:
 Ethical, Legal, and Psychosocial Implications of Genetic Testing in Children and Adolescents The American Journal of Human Genetics 97, 6–21, July 2, 2015

"A Climb-on DNA Model" sourced under Creative Commons via Flickr from James Gentry.
What is genetic counseling and why it is important?

• Comprehend the medical facts as the diagnosis, course of the disorder, and the available management.

Who should be tested?

• Understand the risk for recurrence for themselves and other family members.
• Choose the course of action that seems most appropriate
• Providing supportive counseling to families and making referrals to appropriate specialists, social services, and family and patient support groups.

http://learn.genetics.utah.edu/content/disorders/counselors/

Genetic counseling can aid couples in making informed decisions about pregnancies

https://www.nlm.nih.gov/medlineplus
Thank you