Synapse Glycosylation Drives CDG Neurological Outcomes: Insights from an Animal Model

Patricia Jumbo-Lucioni, MD, PhD
Dept. Biological Sciences
Vanderbilt University
Nashville, TN, USA
Sugars heavily decorate cell surfaces and extracellular spaces in the nervous system.
The Glycosylated Synaptomatrix

- **NMJ**: heavily glycosylated synaptomatrix.

- **Glycosylated synaptomatrix**: crucial role in synaptic organization, adhesion, signaling and transmission (Martin P, J Neurocytol 2003; Yamaguchi Y, Bioch Bioph Acta 2002).
CDG and neurological outcomes

- >100 Congenital Disorders of Glycosylation (CDG) disease states have been identified over the last 20 years and this list is rapidly growing.
- Characterized by severe neurological defects including movement defects, developmental delay and intellectual disability.
- Cellular and molecular mechanisms underlying these disorders are not well understood.
- Effective treatments are overall not available, imposing a huge financial burden on healthcare costs.

<table>
<thead>
<tr>
<th>Number of patients known</th>
<th>CDG-Ia</th>
<th>CDG-Itb</th>
<th>CDG-Ic</th>
<th>CDG-ID</th>
<th>CDG-Id</th>
<th>CDG-Ie</th>
<th>CDG-IIa</th>
<th>CDG-IIb</th>
<th>CDG-IIc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychomotor retardation</td>
<td>+→+++</td>
<td>−</td>
<td>+/++</td>
<td>+++</td>
<td>+++</td>
<td>−→+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Seizures</td>
<td>−→++</td>
<td>±</td>
<td>−→+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>−</td>
</tr>
<tr>
<td>Axial hypotonia</td>
<td>+++</td>
<td>±</td>
<td>++/+++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Strabismus</td>
<td>+++</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Cerebellar hypoplasia</td>
<td>+++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Dysmorphia (fat pads, inverted nipples)</td>
<td>−→+++</td>
<td>−</td>
<td>±</td>
<td>±</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Liver disease</td>
<td>+</td>
<td>+++</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Coagulopathy</td>
<td>+/++++</td>
<td>+/+++</td>
<td>+++</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Protein-losing enteropathy</td>
<td>±</td>
<td>+++</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>microcephaly</td>
<td>microcephaly</td>
<td>stereotype behavior</td>
</tr>
<tr>
<td>Other</td>
<td>multorgan involvement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GLYCOSYLATION DEFECTS may account for neurodevelopmental complications in CG patients:

- locomotion problems and tremor,
- speech delay,
- learning disability.
Drosophila neuromuscular junction (NMJ) as model organism for CG

Drosophila wandering L3

Drosophila

sg2

sg3

BOUTON

Antibody

Cell surface

Dani and Broadie, 2012
Drosophila melanogaster resembles the CG patient phenotype

- Galactose metabolic pathway is conserved in fruit flies.

- GALT-null flies survive to adult in the absence of dietary galactose, but failed to do so following galactose exposure.

- Like patients, flies exhibit LOCOMOTOR IMPAIRMENTS independent of galactose exposure.

- **GALT** was identified as a glycan-related gene linked to a significant increase in bouton number at the NMJ (Dani et al., PLoS Genet 2012).
SUGAR COMPOSITION OF GLYCOSYLATED SYNAPTOMATRIX IN CG

Galactose-related glycosylation changes: terminal galactose and N-acetyl galactosamine.
Striking loss of terminal galactose and N-acetyl galactosamine at NMJ in CG

Jumbo-Lucioni et al., DMM 2014
The Glycosylated Synaptomatrix

- NMJ: heavily glycosylated synaptomatrix.
Loss of \textit{dGALT}: increased synaptic growth and structural overelaboration
IS THERE A BEHAVIORAL CONSEQUENCE ASSOCIATED TO THESE CHANGES IN THE SYNAPSE?
Impaired coordinated movement in CG *Drosophila* model rescued by human *GALT*
GALT is part of a highly interactive network of proteins: GALK as potential therapeutic target.
\textit{dGALK} co-removal corrects glycosylation losses in the \textit{Drosophila} CG model
dGALK co-removal corrects movement defects and NMJ structure

![Graph and images related to movement time and bouton number comparisons between control, dGALK, dGALT, and dGALK; dGALT conditions.](image-url)

Jumbo-Lucioni et al., DMM 2014
GALT is part of a highly interactive network of proteins: GALE as potential therapeutic target
dGALE co-removal worsens sugar loss in the *Drosophila* CG model
dGALE co-removal worsens movement defects and NMJ structure

Bar graphs:
- **Y-axis:** Movement Time
- **X-axis:** treatment groups (control, dGALT, dGALE, dGALT; dGALE)
- **Graphs:**
 - Y-axis: Bouton number
 - X-axis: treatment groups (control, dGALT, dGALE, dGALT; dGALE)

Images:
- Comparison of control and *dGALT* conditions for bouton number and HRP-DLG staining.
New model of CG neurodevelopmental disorder

galactose \rightarrow gal 1-P

ATP ADP

UDP galNAC

UDP glucuronate

UDP UDP UDP UDP

glc 1-P

gal

glc

sgl CG10072

CG5268

CG12660
dGALT; dGALE

PRESYNAPTIC

EXTRACELLULAR MATRIX

POSTSYNAPTIC
Acknowledgements

VANDERBILT UNIVERSITY

Kendal Broadie Tyler Kennedy
Will Parkinson Caleb Doll
Neil Dani Danielle Kopke
Cheryl Gatto Dominic Vita
Emma Rushton
Qing Xia Chen
Mary Lynn Dear
Randy Golovin
Jenny Aguilar

EMORY UNIVERSITY

Judy Fridovich-Keil

National Institutes of Health Grant R01 MH096832 (to KB)